Ricevo da Elisa il seguente quesito:
Tra le parabole che hanno asse verticale e vertice \(V(0,1)\) determinare quella che ha tangenti nei punti \(A\) e \(B\) di ascissa \(1\) e \(-1\) tra loro perpendicolari. Tra le parabole determinate indicare con \(p\) quella concava verso l’alto, scrivere le equazioni delle tangenti a \(p\) in \(A\) e \(B\), determinare il loro punto di intersezione \(C\) e calcolare il volume del solido generato da una rotazione di \(180^\circ\) attorno all’asse di \(p\) del triangolo mistilineo \(ABC\).
↧