Ricevo da Elisa la seguente domanda:
Caro professore,
la prego mi aiuti a risolvere questo integrale definito:
\[\int\limits_{0}^{\pi }{\sin x\cos \left( mx \right)dx\quad \quad m\in \mathbb{Z}}\quad .\]
Grazie.
Le rispondo così:
Cara Elisa,
procedendo per parti, calcoliamo l’integrale indefinito \({{I}_{m}}=\int{\sin x\cos \left( mx \right)dx}\):
\[{{I}_{m}}=-\cos x\cos \left( mx \right)-m\int{\cos x\sin \left( mx \right)dx=}\]\[=-\cos x\cos \left( mx \right)-m\left[ \sin x\sin \left( mx \right)-m\int{\sin x\cos \left( mx \right)dx} \right]=\]\[=-\cos x\cos \left( mx \right)-m\sin x\sin \left( mx \right)+{{m}^{2}}{{I}_{m}}\to \]\[\to {{I}_{m}}=\frac{\cos x\cos \left( mx \right)+m\sin x\sin \left( mx \right)}{{{m}^{2}}-1}\]
da cui:\[\int\limits_{0}^{\pi }{\sin x\cos \left( mx \right)dx=}\left[ \frac{\cos x\cos \left( mx \right)+m\sin x\sin \left( mx \right)}{{{m}^{2}}-1} \right]_{0}^{\pi }=\]\[=\frac{\cos \left( m\pi \right)+1}{1-{{m}^{2}}}= \left\{ \begin{array}{ll} \frac{2}{1-m^2}\quad m=2k \\ 0\quad\quad m=2k+1 \end{array} \right.\] con \(k\in \mathbb{Z}\).
Massimo Bergamini