Ricevo da Elisa il seguente problema:
I due settori circolari consecutivi \(AOB\), \(BOC\) del cerchio di centro \(O\) e raggio \(r\), hanno ciascuno l’angolo al centro di ampiezza \(\alpha\le 45{}^\circ\). Si determini l’angolo \(\alpha\) in modo che sia \(k\) il rapporto fra il maggiore e il minore dei due solidi generati dai due settori dati, in una rotazione completa attorno alla retta \(OA\). Si consideri il caso particolare \(k = 1 + \sqrt{2}\).
↧