Quantcast
Channel: L'esperto di Matematica – Zanichelli Aula di scienze
Viewing all articles
Browse latest Browse all 750

Un integrale improprio

$
0
0

Ricevo da Paola la seguente domanda:

 

Gent.mo Professore,

mi aiuta per favore a risolvere questo integrale?

                               \[\int\limits_{2}^{3}{\frac{1}{\sqrt{\left( x-2 \right)\left( 3-x \right)}}\,}dx\quad .\]

Grazie.

 

Le rispondo così:

 

Cara Paola,

possiamo calcolare l’integrale improprio come limite di una funzione integrale in questo modo:

\[\int\limits_{2}^{3}{\frac{1}{\sqrt{\left( x-2 \right)\left( 3-x \right)}}\,}dx=\underset{a\to {{2}^{+}}}{\mathop{\lim }}\,\left( \underset{b\to {{3}^{-}}}{\mathop{\lim }}\,\int\limits_{a}^{b}{\frac{1}{\sqrt{\left( x-2 \right)\left( 3-x \right)}}\,}dx \right)\]

e poichè\[\frac{1}{\sqrt{\left( x-2 \right)\left( 3-x \right)}}=\frac{1}{\sqrt{-{{x}^{2}}+5x-6}}=\frac{1}{\sqrt{\frac{1}{4}-\left( {{x}^{2}}-5x+\frac{25}{4} \right)}}=\]\[=\frac{1}{\sqrt{\frac{1}{4}-\frac{{{\left( 2x-5 \right)}^{2}}}{4}}}=\frac{2}{\sqrt{1-{{\left( 2x-5 \right)}^{2}}}}\]

si ha \[\int\limits_{2}^{3}{\frac{1}{\sqrt{\left( x-2 \right)\left( 3-x \right)}}\,}dx=\underset{a\to {{2}^{+}}}{\mathop{\lim }}\,\left( \underset{b\to {{3}^{-}}}{\mathop{\lim }}\,\int\limits_{a}^{b}{\frac{2}{\sqrt{1-{{\left( 2x-5 \right)}^{2}}}}\,}dx \right)=\]\[=\underset{a\to {{2}^{+}}}{\mathop{\lim }}\,\left( \underset{b\to {{3}^{-}}}{\mathop{\lim }}\,\left[ \arcsin \left( 2x-5 \right) \right]_{a}^{b} \right)=\underset{a\to {{2}^{+}}}{\mathop{\lim }}\,\left( \underset{b\to {{3}^{-}}}{\mathop{\lim }}\,\left[ \arcsin \left( 2b-5 \right)-\arcsin \left( 2a-5 \right) \right] \right)=\]\[=\underset{a\to {{2}^{+}}}{\mathop{\lim }}\,\left( \frac{\pi }{2}-\arcsin \left( 2a-5 \right) \right)=\frac{\pi }{2}+\frac{\pi }{2}=\pi \quad .\]

Massimo Bergamini


Viewing all articles
Browse latest Browse all 750

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>