Ricevo da Barbara il seguente quesito:
Giustificare perché non possono esistere due funzioni che soddisfino queste condizioni:
caso 1) \(f(x)\) è definita e continua in \(\mathbb{R}\), derivabile due volte in \(\mathbb{R}\) e tale che \(f^\prime (0)=1\), \(f^\prime (3)=7\) e \(f''\left( x \right)<0\) per ogni \(x\) appartenente a \(\mathbb{R}\).
caso 2) \(f(x)\) è definita e continua in \(\mathbb{R}\), derivabile in \(\mathbb{R}\) e tale che \(f(3)= -1\), \(f(7)= -5\) e \(f'(x)>0\) per ogni \(x\) appartenente a \(\mathbb{R}\).
↧