Ricevo da Elisa i seguenti quesiti:
1) Una piramide a base triangolare regolare è inscritta in una sfera il cui volume è \(2916\sqrt{3}\pi\). Sapendo che lo spigolo laterale è \(6\sqrt{3}\), determinare l’altezza della piramide, il volume e l’area della superficie laterale della piramide.
2) Nel triangolo isoscele \(ABC\) di incentro \(O\) l’angolo al vertice e di \(36^\circ\). Detto \(P\) il punto in cui la retta \(AO\) interseca \(BC\), dimostrare che il volume della sfera di diametro \(AB\) sta al volume della sfera di diametro \(BP\) come \(AC\) sta ad \(OP\).
↧